

Vocabulary

- 1. Explain what is meant by a *parent function*.
- **2.** Describe the asymptotes and point of discontinuity of the graph of the function 1

$$f(x) = \frac{1}{x^2 - 3x - 4}$$
. Use an automatic grapher if needed.

Representations Objective J

In 3–5, give an equation of a parent function whose graph has the given features.

- 3. an asymptote but no points of discontinuity
- 4. points of discontinuity but no asymptotes
- 5. two asymptotes
- 6. a. Give an equation for the parent function of a parabola with equation $y = 3(x 2)^2 + 2$.
 - **b.** Graph $y = 3(x 2)^2 + 2$ and its parent function on an appropriate viewing window of an automatic grapher. Give the intervals of *x* and *y*-values for your window.
 - **c.** In the screen at the right, sketch what you see on your window.
 - **d.** Describe the relationship between the two graphs.

See pages 225–229 for objectives.

Properties Objective E

1.	A data set has a mean of 5 and a standard deviation of 2. Suppose 1,000 is added to each observation. What are the new mean and standard deviation?			
2.	A data set has a median of 35 and a mode of 30. Suppose 15 is added to each observation. What are the new mode and median?			
Uses Objective I				
3.	A meteorologist takes a number of air-temperature read and finds that the mean temperature is -24.66°C with a standard deviation of 2.27°C. He then decides to conve all of his measurements from degrees Celsius to degree Kelvin. To do this, he uses the formula $K = C - 273.12$ where C is the temperature in degrees Celsius and K is the temperature in degrees Kelvin.	lings rt s 5,		
	a. What is the mean air-temperature reading in degrees Kelvin?			
	b. What is the standard deviation of air- temperature readings in degrees Kelvin?			
4.	The box plot below displays the annual salaries of employees at Transformation Technologies, Inc., a small biotech company involved in cloning research.			
	20 25 30 35 40 45 50 55 60 65 70 Salaries (× \$1,000)			
	Suppose, due to profit sharing, each employee receives an end-of-year bonus of \$5,000. Which, if any, of the following descriptive statistics will change due to this bonus? If they change, give their new values.			
	a. median annual income			
	b. interquartile range			
	c. range			
	d. outliers			

Name

See pages 225–229 for objectives.

Properties Objective F

In 1–4, decide whether the function with the given equation is *even*, *odd*, or *neither*. Justify your answer algebraically.

 1. $s(t) = 8t^7$

 2. $f(x) = 7x^5 - 5x^2$

 3. $g(h) = -9h^2 + 5$

 4. v(m) = |7m + 2| - 5

Representations Objective L

In 5 and 6, decide whether the function whose graph is given is *even*, *odd*, or *neither*.

In 7 and 8, describe the symmetries of the graphed function.

Properties Objective C

- 1. Find the scale change *S* which shrinks a graph horizontally with a factor of $\frac{1}{6}$ and stretches it vertically with a factor of 8.
- 2. Find an equation for the image of $y = \sqrt{x^2 + 1}$ under the scale change S: $(x, y) \rightarrow (\frac{x}{3}, 3y)$.
- 3. Describe two different transformations S_1 and S_2 which map the graph of $y = x^2$ onto the graph of $y = \frac{9}{4}x^2$.
- 4. *Multiple choice*. Which scale change will map $y = \frac{\pi}{2}x^2$ so that the transformed graph includes the point (1, 1)?
 - (a) $S(x, y) = \left(\sqrt{\frac{2}{\pi}}x, \frac{2}{\pi}\right)$ (b) $S(x, y) = \left(\sqrt{\frac{2}{\pi}}x, y\right)$ (c) $S(x, y) = \left(x, \frac{2}{\pi}y\right)$ (d) $S(x, y) = \left(x, \frac{\pi}{2}y\right)$

Properties Objective D

- 5. The graph of an equation has *x*-intercepts -1.5, 1, and 2, and *y*-intercept -3. Give the *x*- and *y*-intercepts for the image of the graph under the transformation $S: (x, y) \rightarrow (2x, 3y).$
- 6. Describe the points of discontinuity on the image of the graph of y = [x] under the scale change *S*: $(x, y) \rightarrow (2x, \frac{1}{3}y)$.
- 7. Suppose the scale change S: $(x, y) \rightarrow (4x, 3y)$ is applied to the graph of $y = \frac{x}{x^2 - 9}$. What effect does this transformation have on the graph's asymptotes?

Representations Objective K

8. Sketch graphs of $y = \sqrt{x}$ and its image under the transformation $S: (x, y) \rightarrow (\frac{1}{4}x, y).$

4. Neil Vestor is trying to decide whether he should purchase stock in an American or a Japanese manufacturing company. He recorded the price of each stock over a 3-week period and computed the mean and standard deviation for each.

	American Company	Japanese Company
Mean stock value	\$39.60	¥6734
Standard deviation	\$ 2.50	¥ 187

To compare the two stocks, Neil rescales his raw data by converting the stock prices in yen to dollars, using the exchange rate 1 = 127. If Neil is trying to minimize his risk by choosing the stock with the least variability, which stock should he buy? Justify your answer.

Name LESSON **Questions on SPUR Objectives** See pages 225–229 for objectives. ASTER Skills Objective A In 1 and 2, let $f(x) = x^2 + 2x + 7$ and g(x) = 5x - 3. 1. Evaluate each composite. **b.** *g*(*f*(1)) _____ **a.** *f*(*g*(1)) _____ 2. Find a formula for each composite. **a.** f(g(x))**b.** g(g(x))**3.** Let $F = \{(1, 7), (2, 4), (3, 2), (4, 1)\}$ and $G = \{(7, 6), (1, 3), (2, 2), (4, 1)\}$. Find each composite. a. $F \circ G$ **b.** $G \circ F$ 4. Consider the functions *h* mapping h A to B and *j* mapping B to C. Evaluate each composition. **a.** h(j(a)) _____ **b.** j(h(b)) _____ **c.** $(h \circ j)(d)$ _____ **Properties** Objective G 5. Let $s(x) = \sqrt{x-1}$ and $n(x) = x^2 - 2$. Give the domain of each composite. **a.** $n \circ s$ **b.** $s \circ x$ 6. Let $p(t) = \frac{1}{t} - 1$. True or false. The domain of p is the same as the domain of $p \circ p$. Justify your answer.

