CHAPTER 5: The Periodic Law

NAME:	
•	

MODS:

Chapter 5: The Periodic Law Reading Guide

5.	1 –	History	of the	Periodic	Table	(pgs.	125-129)
----	-----	---------	--------	-----------------	-------	-------	---------	---

	, , , , , , , , , , , , , , , , , , , ,
1)	What did Dimitri Mendeleev notice when he started to organize the elements in order of increasing atomic mass?
2)	What was Henry Moseley's contribution to the development of the periodic table?
3)	Define what is meant by periodic law and explain how this is related to the periodic table.
	5.2 – Electron Configuration and the Periodic Table (pgs. 130-141)
	5.2 - Liectron Configuration and the Feriodic Table (pgs. 150-141)
4)	Explain the difference between the arrangement of groups and periods as it relates to the periodic table.
5)	Identify some key features for elements that are associated with the following categories:
	• s-block : (Groups 1 & 2)
	Group 1 - known as (not including H)
	Key features:
	Group 2 - known as
	Key features:

• (d-block: (Groups 3-12)		
	Known as the m	etals	
	Key features:		
• 1	p-block: (Groups 13-18)		
	The p-block elements together with theblock elemen elements.	ts are called	I the
-	The properties of the elements in the p-block	greatly.	
	Group 17 - known as		
	Key features:		
	Group 18 - known as		(see bottom of pg.127)
	Key features:		
• 1	f-block: (two periods at the bottom of periodic table)		
	4f - known as the		
	Key features:		
	5f - known as the		
	Key features:		
	5.3 – Electron Configuration and Periodic Prop	erties (pgs.	142-156)
Defi	ne atomic radius (AR) :		
	Period trend: generally	acros	ss a period.
	Why? -		
•	• Group trend: generally	down	a group.
	vviiy: —		

6)

7)	Define ionization energy (IE):	
	Period trend: generally Why? -	_ across a period.
	Group trend: generally Why? –	_ down a group.
8)	Define electron affinity (EA):	
	How does electron affinity differ from ionization energy?	
	Period trend: generally Why? -	_ across a period.
	Group trend: generally Why? –	_ down a group.
9)	Define the term valence electrons:	
	For main-group elements, the valence electrons are the electr	ctrons in the outermost

10) Using **Figure 3.10**, complete the following table which identifies the valence electrons in maingroups elements (s & p-block)

Group #	Group configuration ("n" = any energy level)	# of Valence Electrons
1		
2		
13		
14		
15		
16		
17		
18		

11)	Define the term electronegativity	(FN)	١.
,	Bonno the term cicotionegativity	, ,	٠,

•	Period trend: generally	 across a period.
	Why? -	

Group trend: generally _____ down a group.

Why? –

Quick Guide to the Periodic Table

The Periodic Table is a list of known elements. It is organized by increasing **atomic number**. There are two main groups on the periodic table: **metals** and **nonmetals**. The left side of the table contains elements with the greatest metallic properties. As you move from left to right, the elements become less metallic with the far right side of the table consisting of nonmetals. The elements in the middle of the table are called "transition" elements because they are changed from metallic properties to nonmetallic properties. A small group of elements whose members touch the zigzag line (referred to as the "staircase") are called **metalloids** they have both metallic and nonmetallic properties.

The table is also arranged in vertical columns called "groups" or "families" and horizontal rows called "periods". Each arrangement is significant. The elements in each vertical column or group have similar properties. Group 1 elements all have 1 electron in their outermost shells. This gives them similar chemical properties. Group 2 elements all have two electrons in their outer shells. This also gives them similar properties to one another. Not all groups, however, hold true to this pattern; for example, group 16 begins with a nonmetal (C), includes metalloids (Si & Ge), and includes metals (Sn & Pb). The elements in the first period or row all have electrons within the 1st energy level (thus the atoms only contain one electron shell). The elements in period 2 have electrons in both the 1st and 2nd energy level (thus the atoms contain two electron shells). The elements in period 3 have three electron shells and so on.

There are a number of major groups containing elements with similar properties. These are:

- <u>Hydrogen</u>: This element does *not match* the properties of any other group. It is very unique and so it stands alone. It is placed above group one but is not a part of that group. It is a very reactive, colorless, odorless gas at room temperature. (1 valence electron *only 1 electron)
- Group 1: Alkali Metals These metals are extremely reactive and are never found in nature in their pure Form. They are silver colored and shiny. Their density is extremely low so they are soft enough to be cut with a knife. (1 valence electron ns¹)
- <u>Group 2</u>: **Alkaline Earth Metals** These are slightly less reactive than alkali metals. They are silver colored and denser than alkali metals. (2 valence electrons ns²)
- Group 3-12: **Transition Metals** These metals have a moderate range of reactivity and a wide range of properties. In general, they are shiny and good conductors of heat and electricity. They also have higher densities and melting points than groups 1 & 2 (1 or 2 <u>valence</u> electrons depending on the element ex: Cr= [Ar] <u>4s</u>¹3d⁵ or Mn= [Ar] <u>4s</u>²3d⁵)
- Lanthanides & Actinides: These are also transition metals that were taken out and placed at the bottom of the periodic table so the table would not be so wide. The elements in each of these two periods share many unique properties, so it is fitting that they are separated on the table. The lanthanides (atomic #s 57-71) are shiny and reactive. The actinides (atomic #s 89-103) are all radioactive and are therefore unstable. Elements 95 through 103 do not exist in nature but have been synthetically manufactured in the lab.
- <u>Group 13</u>: **Boron Family/Group** Contains 1 metalloid and 4 metals. Reactive. Aluminum is in this group. It is the most abundant metal in the earth's crust. (3 valence electrons ns²p¹)

	Carbon Family/Group – Contains 1 nonmetal, 2 metalloids, and 2 metals. Varied reactivity (4 valence electrons - ns ² p ²)
-	Nitrogen Family/Group – Contains 2 nonmetals, 2 metalloids, and 1 metal. Varied reactivity. (5 valence electrons - ns ² p ³)
Group 16:	Chalcogens – Contains 3 nonmetals, 1 metalloid, and 1 metal. Reactive group. (6 valence electrons - ns ² p ⁴)
•	Halogens – Contains 4 nonmetals and 1 metalloid. Very reactive. Poor conductors of heat and electricity. Tend to form salts with metals, Na <u>Cl</u> = sodium chloride (7 valence electrons- ns ² p ⁵)
	Noble Gases – Unreactive nonmetals. All are colorless, odorless, gases at room temperature. All are found in earth's atmosphere in small quantities (8 valence electrons - ns ² p ⁶)
	Periodic Table Questions:
1) The ver	rtical columns on the periodic table are called
2) The ho	rizontal rows on the periodic table are called
3) Most of	the elements in the periodic table are classified as
4) The ele	ments along the zigzag line or the staircase are classified as
5) The ele	ements in the upper far right corner are classified as
•	nts in the first group have outer shell electron and are very reactive. They are called
7) Elemer	nts in the second group have outer shell electrons and are also very reactive. They
	led the
8) Elemer	nts in groups 3-12 have many useful properties and are called the
9) Elemer	nts in group 16 have outer shell electrons and are known as the
10) Elemer	nts in group 17 are known as "salt formers" and have outer shell electrons. They
are cal	led
11) Elemer	nts in group 18 are stable and chemically unreactive. They are said to be "inert" and have
	outer shell electrons. We call these
12) The ele	ements at the bottom of the periodic table were pulled out to keep the table from becoming
too wid	e. The first period along the bottom of the table is called the
13) The se	cond period along the bottom of the table which consists of radioactive, mostly synthetic,
elemer	nts is called the

Color Coding the Periodic Table

Directions: Color code the attached periodic table by following and checking off each instruction.

States of	of Matter:
_	draw a BLUE box around the elements that are liquids at room temperature
_	draw a RED box around the elements that are gases at room temperature
_	leave all the elements that are solids at room temperature blank
Types o	of Elements:
_	trace the zigzag line that separates the metals and nonmetals in BLACK
_	draw a BLACK box around the elements that are metalloids-
	(B, Si, Ge, As, Sb, Te, At)
Periods	
_	number the periods in the left margin (#1-7)
Familie	s/Groups:
_	number the families/groups at the top of each column (#1-18)
_	color the alkali metals BLUE – <u>except for hydrogen</u> (leave H blank!)
_	color the alkali earth metals GREEN
_	color the transition metals YELLOW
_	color the lanthanides YELLOW and draw a small "L" in the corner of each box
_	color the actinides YELLOW and draw a small "A" in the corner of each box
_	color the boron family members PURPLE
_	color the carbon family members GREY
_	color the nitrogen family members PINK
_	color the chalcogens (oxygen family) ORANGE
_	color the halogens BROWN
_	color the noble gases RED

Healthun 4	e0.0	ø	180	ర్జ్ జ	5	918	Page 1	ج	8	§ 4	ø	8	ğω	5	221			
3 I \$							4,50	01.738	_							Ì		
	llucetine 9	Ŀ	18.058	17	ਹ	35.453	35	ă	79.90	ES Bullon	_	126.90	astatin 85	¥	1210			
	oxygen 8	0	15 970	16 16	S	32,065	selentum 34	Se	78 96	S2 S2	Ţ	127.60	potonium 84	Ъ	1993			
	niropin 7	z	14,007	phosphorus 15	۵.	30.974	arsenic 33	As	74.922	S1 51	Sp	121.76	bermuth 83	ä	208.98			
	enton 9	ပ	17.011	14	<u>:</u>	28 (665	32	g	12 61	# S	S	11871	85 85	P	2022	runquadem 114	Uud	192
	toron	m	10.811	duminium 13	₹	26,982	931um 31	ga	69.723	m3hm 49	드	114.82	B1	F	201.38			_
							30	Zu	65.30	cosmium 48	ၓ	112.41	80	P	200 50	ununtaum 112	Uub	הנמ
Ş							29	ဌ	63,546	shve 47	Ag	107.87	78 20 20 20 20 20 20 20 20 20 20 20 20 20	Αď	168.97	unernoum 111	Dun	122
1en							richel 28	Z	58.693	paladum 46	Pd	106.42	Paternam 78	풉	195.08	110	Uun	127.11
Elements							27	ပ္ပ	58.933	rhodhm 45	쮼	165.01	T7	느	150.72	109	ž	268
<u> </u>							iron 26	Fe	55.845	nuthentum 44	Ru	101.07	osmicen 76	ő	190.23	108	Hs	1369
							25	M	54 938	technetum 43	ပ	288	fhonbum 75	Se.	16.6.21	107	絽	Per
								ပ်	-	E		-			_			⊣
								>	_			_			_			_
Periodic								F	_	_		-			_			_
							_	သွ	_			-			-	-		-
							- 2						_	*	-	_	*	\dashv
	4	Be	90122	agressum 12	Mg	21,305	20	ça	40.07R	38	Š	87.62	26 56	Ba	137.33			ᆛ
1.007			_	_					_			_			_			ᆜ
ž -	-		٩	ä	_	~	ğ		ě	ž	<u></u>	46	3	_	-	2	_	

and the state of t	S7	S8 S	prateodymum 59	neodymum 60	promethtun 61	Samurium 62	603 63	manlobeg 64	terbium 65	emesouskip 99	bolmbra 67	ethum 68	mynt 69	yflorbum 70
anthamide series	Ľ	င္ပ	ď	ž	Pm	Sm	ш	g	10	2	운	ш	ᆵ	Ϋ́
	132.91	140.12	140.91	144.24	1145	150.35	151.96	157.75	158.93	162.50	164.93	167.76	168 93	173.04
The second secon	actinium	Chortum	pectaclinum	COUNT	minno	plutonium	productum	CUCION	berkelum	calfornium	eansternum.	fermium	mondolovum	mopourm
Actinide series	68	8	91	92	93	8	95	96	97	88	66	9	5	102
	Ac	H	Ра	⊃	QN	Pu	Am	Cu	X	ن	Ë	Fm	Σ	ž
	E22	232.04	23.04	238.03	137	24	1243	54	543	150	1524	1250	852	1259

Nitrogen Family	Oxygen Famiy	Halogens	Noble Gases
Lanthanides	Actinides	Boron Famiy	Carbon Family
	Alkali Metals	Alkali Earth Metals	Transition Metals
	Solid	Liquid	Gas
KEY:	Metals	Nonmetals	Metalloids

In-Class Notes for Chapter 5

1)	,	•		color it
		ents each of the following states Liquid:		
2)	metals from the nonmetals. The referred to as metals and nonmetals. The me and make up the majority of the	e, also known as the "e elements that border this line (because the tals (Na, Cu, Fe, etc.) appear to e elements on the periodic table of this line (with the exception of	B, Si, Ge, As, Sb, Te, Anney possess properties of the The nonmetals (C, Cl, label)	arates the t) are of both _ of this line He, etc.) all
3)				
4)) Indicate the number of valence Group 1 (Alkali metals):	e electrons for each group on th Group 5 (Nitro	e periodic table: gen Family):	
	Group 2 (Alkali earth metals): _		cogens):	
	Group 3 (Boron Family):	Group 7 (Halo	gens):	
	Group 4 (Carbon Family):	Group 8 (Noble	e Gases):	
5)	-	ny total electrons are in an ator		
6)) Lewis Structures show only the	ne valence electrons for an ator	n. Draw the example L ϵ	ewis

Bohr Diagrams & Lewis Dot Structures

Directions:

<u>Bohr Diagrams</u>: Draw a Bohr diagram for each element in the upper right hand corner of each box. Rather than drawing individual protons and neutrons in the nucleus, you may simply write how many of each there are in the nucleus (ex: 2p, 2n). Then draw the individual electrons on the appropriate energy levels (keep in mind the maximum number of electrons allowed on each level).

<u>Lewis Dot Structure</u>: For each element, draw the number of *valence electrons* (represented as dots) around the symbol of the element.

1) Beryllium	2) Sodium
p ⁺ n ⁰ e ⁻	p ⁺ n ⁰ e ⁻
Group Name: Group #: Period #:	Group Name: Group #: Period #:
Lewis Dot Structure:	Lewis Dot Structure:
3) Sulfur	4) Fluorine
p ⁺ n ⁰	p ⁺ n ⁰
e	e
Group Name:	Group Name:
Group #: Period #:	Group #: Period #:
Lewis Dot Structure:	Lewis Dot Structure:

5) Calcium	6) Argon
p+	p+
n ⁰	nº
e	e
Group Name:	Group Name:
Group #: Period #:	Group #: Period #:
Lewis Dot Structure:	Lewis Dot Structure:
7) Carbon	8) Nitrogen
p ⁺	p ⁺
n ⁰	n ⁰
e ⁻	e
Group Name:	Group Name:
Group #: Period #:	Group #: Period #:
·	
Lewis Dot Structure:	Lewis Dot Structure:
Questions:	
9) What information does the group # tell you?)
10) What information does the period # tell you	ı?
11) If two elements are in the same group, wha	t does this mean?
12) If two elements are in the same period, wha	at does this mean?
13) What do you notice about the arrangement	of electrons for the elements in group 18?

Periodic Trends: Atomic Radii (AR)

3. l	What Jsing appro	ı you	ır hin	t elei	ment	abo	ve, fi	ll in t	he b	oxes	bel	ow v	with	eithe	r de	creas	ses o	r <i>inci</i>	reas	es to
mic I	H 1 Li 3 Na 11 K 19 Rb 37	Be 4 Mg 12 Ca 20 Sr 38 Ba	Sc 21 Y 39 Lu	Ti 22 Zr 40 Hf	V 23 Nb 41	Cr 24 Mo 42 W	Mn 25 Te 43 Re	Fe 26 Ru 44 Os	Co 27 Rh 45	Ni 28 Pd 46 Pt	Cu 29 Ag 47 Au	Zn 30 Cd 48 Hg	B 5 Al 13 Ga 31 In 49 TI	C 6 Si 14 Ge 32 Sn 50 Pb	N 7 P 15 As 33 Sb 51 Bi	O 8 S 16 Se 34 Te 52 Po	F 9 Cl 17 Br 35 I 53 At	He 2 Ne 10 Ar 18 Kr 36 Xe 54 Rn		
	55 Fr 87	56 Ra 88	71 Lr 103 La 57 Ac 89	72 104 Ce 58 Th 90	73 105 Pr 59 Pa 91	74 106 Nd 60 U 92	75 107 Pm 61 Np 93	76 108 Sm 62 Pu 94	77 109 Eu 63 Am 95	78 Gd 64 Cm 96	79 Tb 65 Bk 97	Dy 66 Cf 98	Ho 67 Es 99	Er 68 Fm 100	Tm 69 Md 101	Yb 70 No 102	85	118		
	Expla nucle																•			ns c
-																				
-																				
	Expla							_	fect a											tre
	ハンシロ			0 0		0.10.		0.	g	<i>p</i> ·										
	JUSEI																			

F

Li

Mg

Na

Periodic Trends: Ionization Energy (IE)

	Using y		nt ele	ment	abo	ve, fi	ll in t	he b	oxes	bel	y wc	· vith	eithe	r ded	creas	ses o	r <i>inc</i> i	rease	es to
	a group	-	IIIUIC	al e ii	1 6 11 6	ilus	ODSC	i veu	111 (1	10	ı iiza	lion	CHE	gies	acio	133 a	pend	Ju Oi	uowi
niza I	ation En	ergy -														→			
	3 Na N 11 1 K C	Be 4 4 Mg 2 2 Ca Sc 21	Ti 22	V 23	Cr 24	Mn 25	Fe 26	Co 27	Ni 28	Cu 29	Zn 30	B 5 Al 13 Ga 31	C 6 Si 14 Ge 32	N 7 P 15 As 33	O 8 S 16 Se 34	F 9 CI 17 Br 35	He 2 Ne 10 Ar 18 Kr 36		
	37 3	6r Y 88 39 8a Lu	Zr 40 Hf	Nb 41 Ta	Mo 42 W	Te 43 Re	Ru 44 Os	Rh 45 Ir	Pd 46 Pt	Ag 47 Au	Cd 48 Hg	In 49 TI	Sn 50 Pb	Sb 51 Bi	Te 52 Po	53 At	Xe 54 Rn		
	55 5 Fr F	66 71 Ra Lr	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86		
Τ	87 8	103 La	104 Ce	105 Pr	106 Nd	107 Pm	108 Sm	109 Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	L]	118		
		57 Ac 89	58 Th 90	59 Pa 91	60 U 92	61 Np 93	62 Pu 94	63 Am 95	64 Cm 96	65 Bk 97	66 Cf 98	67 Es 99	68 Fm 100	69 Md 101	70 No 102				
	the rela	tive siz	ze of	the a	itom	and	elect	rosta	itic a	ttrac	tion	•							
5.	Explain nuclear															•	•		
										·									
6.	For eac			owin	•	rs of			rcle	the			nt has		larg		dius:		Ca

Li F

Na

Mg

Atomic Radii and Ionization Energy Practice Worksheet

1)	Which element on	the periodic ta	able has the	highest io	nizat	ion en	ergy?		
2)	Ionization energy		acros	ss a period	and			down a	a column.
3)	Rank each of the	following sets	of atoms fro	m <u>lowest t</u>	o hig	<u>hest</u> ic	nization e	energy.	
	a)	Mg, Si, S		b)	Mg	у, Ва, (Ca		
	c)	Ne, Cu, Ba		d)	Si,	P, N			
4)	In each of the follo	owing sets, <u>circ</u>	cle the elem	ent with the	e <u>hig</u>	<u>hest</u> ic	nization e	energy:	
	a)	Li, K, Cs		b)	S,	CI, Ar			
	c)	Br, I, Te		d)	CI,	, Na, A	l		
5)	Which element		periodic	table h	nas	the	largest	atomic	radius?
6)	Atomic radius column.		acro	oss a per	iod a	and _			down a
7)	Rank each of the	following sets o	of atoms fro	m <u>smalles</u>	t to la	argest	atomic rad	dius.	
	a)	N, C, Li		b)	Ne	e, O, C			
	c)	O, P, Si		d)	Mg	у, К, Р			
8)	In each of the follo	owing sets, <u>circ</u> Sr, Rb, Ba	<u>cle</u> the elem			<i>gest</i> at Se, Po		us:	
	·	Cu, Ni, C		ŕ		N, As			

Periodic Trends: Electron Affinity (EA) and Electronegativity (EN)

1.	Define electron affinity:
2.	What is the difference between electron affinity and ionization energy?
3.	Define electronegativity:
4.	Based on the definitions above and your knowledge of valence electrons, which family has a value of zero on Pauling's electronegativity scale and the lowest electron affinity? Why do you think this is?
ე.	Which element has the highest electron affinity and electronegativity on the periodic table?

6. Using your hint element above, fill in the boxes below with either *decreases* or *increases* to appropriately indicate the overall trends observed in the electronegativity values across a period or down a group.

Electi	roneg	ativity	, —								-				→			
	1 H 2.20																	2 He
	3 Li	4 Be											5 B	6 C	7 N	8 0	9 F	10 Ne
	0.98	1.57											2.04	2.55	3.04	3.44	3.98	
	11	12											13	14	15	16	17	18
	Na	Mg											Al	Si	Р	S	CI	Ar
	0.93	1.31					1	1		1	1		1.61	1.90	2.19	2.58	3.16	
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	0.82	1.00	1.36	1.54	1.63	1.66	1.55	1.83	1.88	1.91	1.90	1.65	1.81	2.01	2.18	2.55	2.96	
	37	38	39 Y	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	Rb 0.82	Sr 0.95	1.22	Zr 1.33	Nb 1.6	Mo 2.16	Te 2.10	Ru 2.2	Rh 2.28	Pd 2.20	Ag 1.93	Cd 1.69	In 1.78	Sn 1.96	Sb 2.05	Te 2.1	2.66	Xe
			71		73	74	75	76	77		79						85	86
	55 Cs	56 Ba	Lu	72 Hf	73 Ta	W W	75 Re	Os	lr	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	At	Rn
Щ	0.79	0.89	Lu	1.3	1.5	1.7	1.9	2.2	2.2	2.2	2.4	1.9	1.8	1.8	1.9	2.0	2.2	IXII
	87	88	103	104	105	106	107	108	109	2.2	2.7	1.0	1.0	1.0	1.0	2.0		118
	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt									
	0.70	0.90		-		- 9												
																	,	

-													
-													
-													
-													
-													
-													
8.	Explain what o	causes th	ne trend	d obse	erved fo	or electr	onega	ativity o	lown a g	<i>group</i> in	terms	s of r	าเ
	Explain what c						_	-	_				
	-						_	-	_				
	-						_	-	_				
	-						_	-	_				
-	-	e location	n of the	elect	trons								

Periodic Trends: Practice Worksheet

Directions: For #1-4, use < and > to rank elements according the atomic trends: 1) Rank the following elements by **increasing atomic radius:** → carbon, aluminum, oxygen, potassium 2) Rank the following elements by <u>decreasing</u> electron affinity: → barium, nitrogen, zinc, silicon 3) Rank the following elements by decreasing ionization energy: → strontium, phosphorous, chlorine, cesium 4) Rank the following elements by increasing electronegativity: → sulfur, oxygen, neon, aluminum 5) What is the difference between electron affinity and ionization energy? 6) Why does fluorine have a higher ionization energy than iodine? Be specific about the reason – don't just say "because it's higher up in the group".

7) Why do elements in the same family generally have similar chemical properties?

Chapter 5 Review:

Directions: Answer each of the following questions.

1.	Who	oublished the	first classification of	the elements and	how was this t	able organized?
2.		reorganized th o do this?	e periodic table into	the format we still	use today and	d what property did he
3.	What	is a <u>period</u> ? I	How many are there	in the periodic tab	le?	
4.	What	is a <u>group</u> (als	so called a family)?	How many are the	re in the perio	dic table?
5.	State	the number of	valence electrons	in an atom of:		
	a) su	ılfur	b) calcium	_ c) chlorine _	d) ar	senic
6.	List, b	y number, bo	th the period and gr	oup of each of thes	se elements:	
			<u>Symbol</u>	Period	<u>t</u>	<u>Group</u>
	a) be	eryllium				
	b) ird	on				
	c) le	ad				
7.	Which	n of the followi	ng pairs of element	s below belong to t	he <u>same perio</u>	<u>d</u> ?
	a) Na	a and CI	b) Na and Li	c) Na and Cu	d) Na and N	le
8.	Which	n of the followi	ng pairs of element	s below belong to t	he <u>same grou</u> p	<u>o</u> ?
	a) H	and He	b) Li and Be	c) C and Pb	d) Ga and G	Se
9.	In wh	at type of orbit	als (s, p, d or f) are	the actinide and la	nthanide elect	rons found?

11. In going from top to bottom of any group, each element has more occupied energy level(s) than the element above it.
12. What are the Group 1 elements called?
13. What are the Group 2 elements called?
14. What are the Group 16 elements called?
15. What are the Group 17 elements called?
16. What are the Group 18 elements called?
17. What is the family name given to the group of elements that have the following valence shell electron configurations?
a) s^2 b) s^2p^6
c) s^1 d) s^2p^5
18. Which alkali metal belongs to the sixth period?
19. Which halogen belongs to the fourth period?
20. What element is in the fifth period and the eleventh group?
21. The members of a family or group have similar properties because they all have the same number of electrons.
22. What major factor causes atomic radius to decrease across a period?
23. What major factor causes atomic radius to increase down a column?
24. List the following elements in order of increasing atomic radius : Mg, Cl, Al, Ar
25. List the following elements in order of decreasing ionization energy : Sn, Ge, C, Si
26. List the following elements in order of decreasing electronegativity : Cl, K, Cu, F

10. Would you expect strontium to be, chemically, more similar to calcium or rubidium and WHY?